
Dr. Bibha Verma PG Department of Zoology Maharaja College Ara

BSc Part I, Subsidiary

SULPHUR CYCLE

Sulfur (S), the tenth most abundant element in the universe, is a brittle, yellow, tasteless, and odorless non-metallic element. It comprises many vitamins, proteins, and hormones that play critical roles in both climate and in the health of various ecosystems. The majority of the Earth's sulfur is stored underground in rocks and minerals, including as sulfate salts buried deep within ocean sediments.

The sulfur cycle contains both atmospheric and terrestrial processes. Within the terrestrial portion, the cycle begins with the weathering of rocks, releasing the stored sulfur. The sulfur then comes into contact with air where it is converted into sulfate (SO4). The sulfate is taken up by plants and microorganisms and is converted into organic forms; animals then consume these organic forms through foods they eat, thereby moving the sulfur through the food chain. As organisms die and decompose, some of the sulfur is again released as a sulfate and some enters the tissues of microorganisms. There are also a variety of natural sources that emit sulfur directly into the atmosphere, including volcanic eruptions, the breakdown of organic matter in swamps and tidal flats, and the evaporation of water.

Sulfur eventually settles back into the Earth or comes down within rainfall. A continuous loss of sulfur from terrestrial ecosystem runoff occurs through drainage into lakes and streams, and eventually oceans.

Sulfur also enters the ocean through fallout from the Earth's atmosphere. Within the ocean, some sulfur cycles through marine communities, moving through the food chain. A portion of this sulfur is emitted back into the atmosphere from sea spray. The remaining sulfur is lost to the ocean depths, combining with iron to form ferrous sulfide which is responsible for the black color of most marine sediments.

The process of sulphur cycle is explained below:

The Sulphur is released by the weathering of rocks.

Sulphur comes in contact with air and is converted into sulphates.

Sulphates are taken up by plants and microbes and are converted into organic forms.

The organic form of sulphur is then consumed by the animals through their food and thus sulphur moves in the food chain.

When the animals die, some of the sulphur is released by decomposition while some enter the tissues of microbes.

There are several natural sources such as volcanic eruptions, evaporation of water, and breakdown of organic matter in swamps, that release sulphur directly into the atmosphere. This sulphur falls on earth with rainfall.

Since the Industrial Revolution, human activities have contributed to the amount of sulfur that enters the atmosphere, primarily through the burning of fossil fuels and the processing of metals. One-third of all sulfur that reaches the atmosphere—including 90% of sulfur dioxide—stems from human activities. Emissions from these activities, along with nitrogen emissions, react with other chemicals in the atmosphere to produce tiny particles of sulfate salts which fall as acid rain, causing a variety of damage to both the natural environment as well as to man-made environments, such as the chemical weathering of buildings. However, as particles and tiny airborne droplets, sulfur also acts as a regulator of global climate. Sulfur dioxide and sulfate aerosols absorb ultraviolet radiation, creating cloud cover that cools cities and may offset global warming caused by the greenhouse effect. The actual amount of this offset is a question that researchers are attempting to answer.

The burning of large quantities of fossil fuels, especially from coal, releases larger amounts of hydrogen sulfide gas into the atmosphere. As rain falls through this gas, it creates the phenomenon known as acid rain. **Acid rain** is corrosive rain caused by rainwater falling to the ground through sulfur dioxide gas, turning it into weak sulfuric acid, which causes damage to aquatic ecosystems. Acid rain damages the natural environment by lowering the pH of lakes, which kills many of the resident fauna; it also affects the man-made environment through the chemical degradation of buildings. For example, many marble monuments, such as the Lincoln Memorial in Washington, DC, have suffered significant damage from acid rain over the years. These examples show the wide-ranging effects of human activities on our environment and the challenges that remain for our future.

References:

https://courses.lumenlearning.com/wm-biology2/chapter/the-sulfur-cycle/

https://byjus.com/biology/sulphur-cycle/

https://enviroliteracy.org/air-climate-weather/biogeochemical-cycles/sulfur-cycle/